X^2+y^2+10y-23=0

Simple and best practice solution for X^2+y^2+10y-23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+y^2+10y-23=0 equation:



X^2+X^2+10X-23=0
We add all the numbers together, and all the variables
2X^2+10X-23=0
a = 2; b = 10; c = -23;
Δ = b2-4ac
Δ = 102-4·2·(-23)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{71}}{2*2}=\frac{-10-2\sqrt{71}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{71}}{2*2}=\frac{-10+2\sqrt{71}}{4} $

See similar equations:

| 5.6/y=0.7 | | 9(c+6)-c=6 | | 9x-(7x+8)=4x-10 | | .47x=376 | | 3w-1.2=1/3 | | Xx4+190=Xx13-8 | | 2c+(-8)=(-18) | | 5b-11=13-4 | | -8x-30=-9x+2-3x | | 8b^2+0b+8=0 | | 8(c+9)-c=9 | | 2d+9=3d-4 | | 0=8x-1.5x^2 | | 0=5x^2-36x+81 | | -3c+8=(-10) | | 4n-2(6-8n)=48 | | 13w=49+6w | | 0=5x^2-36x+81x | | 441n^2-225=0 | | 3v-v=7+2v-v | | 3(s+9)−s=1 | | 30-3=x-6 | | -4(y+6)=-2y-12 | | 2x+60=4x-4 | | 2y^2-2y=-10 | | 9w+1=5(w-3) | | 2(x+3)+4x=-2-6x+32 | | 5x-(3x+6)=3x+9 | | 22/3x=7/6 | | 4x^2+24x-18=0 | | -3(y+8)=7y-44 | | 3h+1=1+3h |

Equations solver categories